CLIENT ORIENTED COMMITMENT

Share with us your objectives, your vision, time table and budget and we will assess the feasibility of your project and come back to you with the most efficient design and construction solutions available.

From the initial feasibility studies, through planning and development, through project design and tender stage we will help you deliver a quality solution on time and on budget.

DNEC prides itself in listening to the client’s objectives and project goals and then recommending the most efficient construction path and solution-oriented assistance.

We are pleased to work with owner clients directly, large government agencies, contractors or in support of other architectural/engineering firms.

Our inherited experience in the GCC region over the last 15 years speaks to the true value that DNEC brings to the project design and construction team. Innovative designs utilizing proven technologies all delivered in a safe fashion, on schedule, on budget, every time.
THE COMPANY

DNEC is an international engineering consultancy founded in 2005 as a partnership between two experienced structural engineers, Nenad Jovanovic and Darko Popovic. With over 15 years of experience in the Middle East working on unique and complex design and construction projects, both partners have built a strong portfolio for their company. Their dedicated work, high ethical standards and high quality of service have attracted a growing clientele.

DNEC is working with all the major construction companies, governmental agencies and private development firms and developed key partners and cooperative working arrangements with manufacturers, specialty and general contractors and large A/E firms.

Today DNEC operates throughout the Middle East and South East Europe and delivers solutions for projects all over the world. It has offices in the UAE and Serbia.

DNEC is dedicated to building lasting relationships based on trust and mutual respect with its clients and business partners. Innovation, quality design, flexibility and experience are DNEC’s sources of strength.

<table>
<thead>
<tr>
<th>DNEC UAE</th>
<th>abudhabi-office@dnec.com</th>
<th>www.dnec.com</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>office-uae@dnec.com</td>
<td></td>
</tr>
</tbody>
</table>

Darko Popovic
Managing Partner

e-mail: darko@dnec.com
web: www.dnec.com

Nenad Jovanovic
Managing Partner

e-mail: nenad@dnec.com
web: www.dnec.com

Vanja Alendar
Technical Director / Partner DNEC d.o.o.

e-mail: vanja.alendar@dnec.com
web: www.dnec.com

DNEC d.o.o. – Serbia

office-srb@dnec.com
www.dnec.com
SERVICES

1. Structural Design of Buildings
 - Concept, preliminary and “for construction” design and detailing.
 - Structural analysis, design and detailing of super high-rise buildings.
 - Design and detailing of all types of structures - concrete, steel, pre-stressed, post-tensioned, composite etc.
 - Expertise in the field of seismic and wind engineering, building movement and structural vibrations induced by wind or human pace (in cooperation with Full Scale Dynamics Limited from Sheffield, UK).

2. Structural Design of Infrastructure
 - Design of bridges.
 - Design of reservoirs, water-tanks and water-towers.

3. Engineering Consultancy Services
 - Review and Peer-review services.
 - Value engineering, re-design and provision of alternative construction solutions using precast pre-stressed structural elements, post-tensioned elements and composite steel/concrete elements.
 - Vibration monitoring services in association with “Full Scale Dynamics Limited” from Sheffield, UK.

4. Construction Support
 - Design & Build - Complete engineering services.
 - Design of bridge bearings.
 - Temporary works design and design verification of temporary structures such as scaffolding assemblies, wall shutters and temporary props and bracings.
 - Expertise in heavy-lift engineering, strand-jacking and design of associated temporary works.
 - Complete engineering solutions including sequence of construction, planning and positioning of cranes and construction scheduling.

5. Evaluation, Rehabilitation and Strengthening of Structures
 - External pre-stressing solutions.
 - Jacketing and design of CFRP (carbon fiber reinforced polymers) applications for strengthening of reinforced concrete elements.
 - Advanced procedures for state-of-art seismic resistance structural evaluation including static and dynamic non-linear analysis.
Project Name: NEW ABU DHABI AIRPORT

Location: Abu Dhabi, United Arab Emirates
Client/Contractor/Sub-contractors: ADAC, TAV-CCC-Arabtec JV, Eversendai, CSCEC

Engineer: Arup

Brief Description of Commissions:
Part 1 - Independent Checking Engineer for structural steel works, Package 3 & 4
Part 2 - Midfield Terminal Building Connection Design

Professional Services Delivered: ICE for structural steel works for the Piers.

Preparation of connection design documents for MTB Central Processor Roof secondary girders.
Project Name: Western Metro Station

Client: Higher Commission for the Development of Arriyadh

Location: Riyadh, Kingdom of Saudi Arabia

Lead Consultant: Omrania & Associates

DNEC role: Structural Consultant

Duration: May – August 2013

Western Metro station is a landmark project designed to become an integral part of the local neighbourhood. In addition to the Metro station, the development comprises bus station (BRT), food and vegetable Market, underground car park, mosque and large public areas that include parks, plazas and passages.

The basement and podium structure is 360 m x 250 m in plan and consists of cast-in-place concrete foundations, columns, retaining walls and podium slab. Metro station and Market roofs are designed as free-formed structural steel trusses. Post-tensioned box girders are used for Metro and BRT viaducts having spans of approximately 40 m - 50 m.

3D image courtesy of Omrania & Associates
DNEC were engaged by the award winning Austrian architect Wolfgang Tchapeller to join his team as a lead structural designer. This futurisitcally shaped project comprises a 15,000 m² elevated exhibition space and an underground facility of similar size. The design completion and start of construction is expected to be in the 3rd quarter of 2013.
Sheikh Khalifa Medical City (SKMC) consists of the Main Building, the Car Park Building and Service Buildings. The Main Building has a footprint of 207 m x 225 m comprising foundation slab, one underground slab, ground floor, the plinth up to L2, five separate buildings rising from L3 to L7 and the Royal Tower L8 to L10. The Car Park is a 4-storey building located north of the Main Building. The total area is approximately 360,000 m².
Project Name: Hawaii Towers
Client: Koh Puos Investment Group
Location: Sihanouk Ville, Cambodia
Consultant: Houser AG
DNEC role: Sub-Consultant - Structure
Duration: June 2011 – December 2011

Structural design covering Concept and Construction Permit design. The Project comprises three 25 to 27-storey buildings connected through podium having the total build-up area of 106,000 m².

Reinforced concrete structure located in the region with Typhoon winds (design wind velocity up to 42 m/sec, the 10 min mean wind velocity) and exposed to high saline corrosion.

Project Name: Delta Tower - Block 20
Client: Delta Tower d.o.o
Architect: MYS
Location: Belgrade, Serbia
DNEC role: Assigned Lead Structural
Duration: Ongoing (DNEC – Belgrade)
Status: Preliminary design phase

About 150,000 m², mixed-use complex: 32 storey tower, hotel, shopping-mall, five levels of underground garage in water.

Picture: Aerial view (Courtesy of MYS Architects)
Project Name: Burj Al Fattan Tower

Client: All Fattan Properties
Architect: LWD Architects
Consultant: Hyder Consulting Middle East Ltd
Location: Dubai, UAE

DNEC role: Engaged with **Hyder Consulting Middle East Ltd** to prepare Concept and Preliminary design.

Duration: June 2008 – December 2008
Status: Tender stage

Composite Steel/Reinforced concrete tower structure. Mixed use high-rise development of 97 storeys. Total height 463 m. Four underground parking levels. High strength concrete up to 100 MPa cylinder strength utilized.

Picture: Revit model of the structure

Project Name: Doha Convention Center & Tower

Client: Qatari Diar
Architect: Murphy/Jahn
Consultant: Hyder Consulting Middle East Ltd with MKM
Location: Doha, Qatar

DNEC role: Engaged with **Hyder Consulting Middle East Ltd** to prepare “For Construction” Design of post-tensioned pre-stressed slabs

Duration: September 2007 – March 2008, DNEC – Belgrade
Status: Tender phase

High-rise reinforced concrete structure with central core and four mega-columns in corners. Post-tensioned slabs with bonded tendons and details adjusted to jump-form technology of central core construction.

Picture: Ram Concept model of the structure
Project Name: Abu Dhabi Tower

Client: Roya International
Architect: Adrian Smith + Gordon Gill Architecture LLP
Consultant: Hyder Consulting Middle East Ltd
Location: Doha, Qatar
DNEC role: Engaged with Hyder Consulting Middle East Ltd to prepare concept design.
Duration: September 2007 – March 2008, DNEC – Belgrade, Serbia
Status: Preliminary design phase

Composite Steel/Reinforced concrete tower structure. Mixed use high-rise development of 97 storey. Total height 520 m. Four underground parking levels. High strength concrete up to 100 MPa cylinder strength utilized.

Picture: Strand7 model of the structure

Project Name: The Pentominium

Client: Trident International Holdings
Architect: Aedas Architects
Consultant: Hyder Consulting Middle East Ltd
Location: Dubai, UAE
DNEC role: Engaged with Hyder Consulting Middle East Ltd to prepare “for construction” design.
Duration: September 2007 – March 2008, DNEC – Belgrade, Serbia
Status: Under construction

Reinforced concrete, 120 storey, 518 m in height. Residential high-rise development. Six underground parking levels. High strength concrete up to 100 MPa cylinder strength utilized.

Picture:
Strand7 FEA model of the structure
Project: Omo River Bridge Recovery, Repair and Strengthening Works

Client: Ethiopian Roads Authority
Location: Omorate, Ethiopia
Main Contractor: Pan-Africa Construction Engineers PLC
Specialist Subcontractor: VSL Middle East

DNEC Role: Engineering Consultant

Recovery of 128 m long structural steel truss that collapsed during bridge launching operation in early 2011.
The scope covered design and engineering of recovery operation including preparation of recovery procedures, method statements and site supervision, as well as design and engineering of temporary works for bridge repair and replacement of damaged members.

Strengthening design of the bridge in accordance with design specifications provided by the Client.

The bridge was recovered, repaired and launched in its final position from May until July 2013. Strengthening works were ongoing at the time when this document went into printing.
Project Name: Al Gharraf Bridge

Client: Petronas
Contractor: ICCB
Location: Al Gharraf, Iraq
DNEC role: Structural Consultant
Duration: March – August 2012
Status: Under construction

Design of tri-span (31.5 m + 42 m + 31.5 m), 105 m long, two-lane bridge. The deck is designed using 1,600 mm deep structural steel girders and 250 mm in-situ concrete slab to BS EN Standards.
Project Name: Exit Ramp ADNEC Car Park A

Client: Hilalco
Location: Dubai, UAE

DNEC role: Design of ramp-bridge

Duration: July - October 2008 (DNEC-UAE)
Status: Completed

Exit ramp for Abu Dhabi National Exhibition Company. Bridge design to Abu Dhabi Municipality/AASHTO requirements includes design of bridge box girder, piers, abutments, pile caps and approach slab. The bridge is designed as three span (30 m - 35 m - 17 m) continuous post-tensioned box girder.

Picture: ADNEC Ramp (Courtesy of Hilalco)
Project Name: Three Temporary Bridges, Al Laffaina Island

Client: Tasameem
Location: Abu Dhabi, UAE

DNEC role: Structural design of bridges

Duration: March – May 2008 (DNEC-UAE)
Status: Completed

Structural design and detailing for the three bridges in Al Laffaina Island.

Bridge No. 1: Three span continuous bridge, each span 40 m long. Bridge deck designed using precast post-tensioned I-girders with precast slabs and in-situ topping.

Bridge No. 2: Single-span 28 m long bridge. Bridge deck designed using precast pre-stressed I-girders with precast slabs and in-situ topping.

Bridge No. 3: Single-span 55 m long bridge. Precast post-tensioned I-girders with in-situ slab.

Pictures courtesy of Al Meraikhi Precast
CONSTRUCTION SUPPORT

Project Name: Information Technology and Communication Complex, 17 Parcels

Client: Riyadh Investment Company
Location: Riyadh, Kingdom of Saudi Arabia
Contractor: Al Ghurair Construction & Arabian Aluminium LLC
DNEC Role: Engineering Consultant
Status: Under construction

Design and detailing of structural steel frame that supports architectural screen feature covered by perforated aluminium panels.

Development of complete construction solution including design and detailing of all temporary works, preparation of production and installation method statements and supervision of works.

![Project Image](image-url)
Project Name: KAFD Skywalk Bridges - Contract C17

Client:	Riyadh Investment Company
Consultant:	BuroHappold
Contractor:	Al Ghurair Construction (Design-and-Build Contract)
Location:	Riyadh, KSA
DNEC role:	Employed by the Contractor to prepare structural design, fabrication drawings, erection methodology and provide site supervision
Duration:	2013
Status:	Ongoing

Tubular type Skywalk link bridges are designed to interconnect all the buildings at the KAFD development in Riyadh. The 57 out of 90 bridges were scheduled for construction during the project’s 1st phase. Complex logistics situation at the KAFD site will require that the detailed construction methodology is considered at the early stage of bridge design process. DNEC has undertaken the whole engineering design services starting from the bridge design and then followed by preparation of fabrication drawings, construction method statement, planning and erection supervision.
Project Name: KAFD Conference Centre

Client: Riyadh Investment Company
Consultant: SOM
Contractor: Parmasteelisa Gartner / Al Reyami Construction
Location: Riyadh, KSA

DNEC role: Construction engineering and design of temporary structures

Duration: 2012 - 2013
Status: Ongoing

Conference center is the masterpiece of the KAFD development. Its steel roof with irregular geometry presented a significant construction challenge. Construction methodology and detailing of temporary supporting frame proposed by DNEC allowed independent erection of the structure nodes weighing up to 23 T prior to erection of members. Detailed sequential and de-propping procedure is analyzed, detailed and supervised.
Project Name: Etihad Towers Seafood Restaurant

Client: Eversendai LLC
Location: Abu Dhabi, UAE

DNEC role: Structural design of restaurant’s feature roof

Duration: March – September 2011
Status: Completed

Structural design of feature roof comprising box steel section with steel rafters supported on inclined steel columns and concrete walls.
Project Name: **CMA Tower**

Client: Central Market Authority

Consultant: HOK - Omrania & Associates JV

Contractor: Saudi Binladin Group (SBG)
Architecture and Building Construction Division

Location: KAFD Development in Riyadh, Kingdom of Saudi Arabia

DNEC role: Employed by SBG as Specialist Engineering Consultant

Status: Under construction

Preparation of construction method statement, vertical transportation study, building shortening study and building shortening compensation method statement. Assistance to SBG in review of method statements and workshop drawings prepared by subcontractors. Design of temporary structures and permanent structure check at temporary construction conditions.

Development of engineering details and participation in discussions with SBG and the engineer on implementation of engineering details. Coordination with SBG and its subcontractors to ensure incorporation of engineering details into workshop drawings.
Project Name: Shams Gate Building

Client: Sorouh
Consultant: Khatib&Alami/Arup
Contractor: ACC / Eversendai
Location: Al Reem Island – Abu Dhabi

DNEC role: Independent review and certification Engineer

Duration: 2011 - 2012
Status: Completed

- Permanent connection design review and certification
- Structure stability check at temporary construction condition review and endorsement
- Heavy lifting methodology review and certification
- Temporary structure design review and certification
- Site inspection and compliance certification
Project Name: Mumbai Airport Hangar Peer Review
Client: Eversendai Construction Private Limited
Location: Mumbai, India
DNEC role: Structural design peer review
Duration: May – October 2011
Status: Completed

Peer review of structural design documents (drawings and calculations) for 145 m long trusses that support the hangar's roof and walls.
Project Name: Steel Cladding to Meydan Race Course VVIP Bridge

Client: Petrofab LLC
Location: Dubai, UAE

DNEC role: Design, detailing and supervision of bridge cladding.

Duration: December 2009 – April 2010
Status: Completed

Complete design and engineering management of wave-shaped cladding steel works including structural design, method statements for production and installation, workshop drawings, production supervision and installation supervision.
Project Name: Balanced Cantilever Construction method for Dubai Metro Bridges

Client: VSL – Freyssinet – Rizzani de Eccher JV

Location: Dubai, UAE

DNEC role: Engineering solution for temporary propping

Duration: December 2006 – May 2007 (DNEC-UAE)

Structural design and detailing of temporary prop structural elements for Dubai Metro bridges constructed using Balanced Cantilever construction method. Each BC Prop assembly comprises 1,2 m wide, 2,6 m high heavy-duty post-tensioned precast spreader beam, two numbers precast columns and top-mounted structural steel bracing together with all provisions necessary for installation of hydraulic jacks and temporary bearings. Maximum working load on BC Prop - 17,000 kN. All connections designed and detailed to allow easy installation and dismantling for re-use at various Dubai Metro Project’s locations.
Project Name: Ice Skating, Aquarium and Carnival Walk Roof Trusses, Dubai Mall

Client: Eversendai LLC
Location: Dubai, UAE

DNEC role: Engineering solution for installation

Duration: January - November 2006 (DNEC-UAE)
Status: Completed

Complete engineering solution for installation of Dubai Mall roof trusses. Structural design and analysis of different installation stages/conditions. Preparation of method statements and installation manuals, as well as construction drawings.

Aquarium and Ice Skating roof trusses (22 Nos. trusses in total, span approx. 50 m each) launched into position by sliding over the distance of 60m using strand jacks and temporary sliding rails.

Carnival Walk triangular shape trusses (20 m in length) installed using segmental erection over the temporary shoring trusses. Site supervision and inspection provided for the above launching and installation operations.
Project Name: Delma Mainland Jetty
Contractor: Hilalco
Location: Jebel Dhanna, Abu Dhabi, UAE
Consultant: Euroestudios
DNEC role: Marine Works Consultant
Duration: March – October 2010

Jetty for ferry boats to Delma island, 250 m in length having five berthing places with Ro-Ro ramps.

Jetty retaining wall constructed with steel sheet piling tied into the backfill using dia 60 mm tie-rods and capped with precast coping units.
MISCELLANEOUS PROJECTS

Project Name: 120m Flagpoles in Umm al Quwain and Fujairah

Owner: Ministry of Public Works

DNEC client and structural steel contractor: Trident Support, Dubai

Status: Construction completed December 2014

Project description and DNEC scope
Two flagpoles, each 120m high, locations Umm al Quwain and Fujairah. Structural design of tapered structural steel poles including foundation design.
INHERITED EXPERIENCE OF KEY PERSONNEL
Darko Popovic

Position: Managing Partner
Date of birth: 1 April 1967
Education: BSc. Civil/Structural Engineer
University of Belgrade, Serbia

Project: Burj Khalifa – Dubai, UAE
Client: Emaar
Designation: Principal Engineer, Hyder Consulting ME

Construction supervision of top steel erection including jacking of top spire structure.

Project: The Emirates Towers
Consultant: Hyder Consulting Middle East
Client: Besix, Multiplex, Murray & Roberts and Turner Int.
Designation: Engineering Manager, Eversendai Engineering L.L.C.-Dubai

Developing erection studies, designing all temp. erection structures for construction of two towers (320 m and 367 m height) which includes 10,000 T of structural steel. Engineer in charge with full responsibility for special 100 T heavy lifting operations (strand jacking transfer trusses to its final position at 180 m height).
Project: Kingdom Trade Centre
Riyadh, KSA

Consultant: Omrania associates
Client: Impregilo S.P.A. - Elseif
Designation: Engineering Manager,
Eversendai Engineering L.L.C.-Dubai

Managing fabrication and supervision. Developing erection studies, design all temp. erection structures for construction of 300 m tower sculpture that includes 4,000 T of structural steel. Engineer in charge with full responsibility for 200 T heavy lifting operation (strand jacking the bridge to its final position at 300 m height). Liaison with Consultants and site erection supervision.

Project: Khalifa Olympic Stadium
Doha, Qatar

Consultant: OA&P
Client: BESIX – MIDMAC JV
Designation: Engineering Manager,
Eversendai Engineering L.L.C.-Dubai

Development of construction studies and coordination with consultants regarding the finalization of overall design and construction of cable roof structure.

Temporary structure design, drawings and supervision of the whole operation.

Project: Ski Dome – Mall of the Emirates
Dubai, UAE

Client: Laing O'Rourke
Designation: Engineering Manager,
Eversendai Engineering L.L.C.-Dubai
Principal Engineer, Hyder Consulting ME

Development of construction studies, coordination with consultants regarding the finalization of overall design and build ability of the structure.
Nenad Jovanovic

Position: Managing Partner
Date of birth: 2 June 1967
Education: BSc. Civil/Structural Engineer
University of Belgrade, Serbia

Project: Mall of the Emirates
Dubai, UAE

Client: Khansaheb
Designation: Projects Manager,
Al Meraikhi Precast,
United Arab Emirates

“Carrefour box”, design and build project. Two-storey structure comprises in-situ columns; 16 m long patented Reduced Weight Precast Pre-stressed Beams and hollow core slabs (HCS) with structural topping. Total floor area 35,000 m².

Project: The Emirates Palace, Abu Dhabi, UAE

Client: Interbeton
Designation: Projects Manager, Al Meraikhi Precast, United Arab Emirates

Design, manufacture and installation of precast architectural units for the Hotel and Palace. Architect’s requirement to install large precast units inside the completed buildings required engineering and production of purpose built devices for transport, handling and final positioning of different precast columns, arches and walls.

Project: Four Seasons Hotel, Doha, Qatar

Client: CDC
Designation: Projects Manager, Al Meraikhi Precast, United Arab Emirates

Design and detailing of precast cladding for Apartment Towers, Hotel, Office Tower and Town Houses. White concrete exposed/sand-blasted, GRC-incorporated decorative panels designed to ACI-318/PCI requirements for façade cladding.
Project: Marina Mall, Abu Dhabi, UAE

Client: Al Habtoor – M & R
Designation: Projects Manager, Al Meraikhi Precast, United Arab Emirates

Design and build project (to ACI-318), comprises cast-in-place walls and columns, precast floor structure and precast façade. Precast pre-stressed beams and HCS (up to 16 m long) used for floor structure. Precast pre-stressed I-girders used for pedestrian bridges and cinema roof. Precast polished concrete façade cladding.

Precast floor area 82,000 m².

Project: Pipe Protection Structures at Road to Ghanada Island, Abu Dhabi, UAE

Client: Bin Hafeez
Designation: Projects Manager, Al Meraikhi Precast, United Arab Emirates

Design, production and erection (to AASHTO requirements) of 22 m long I-girders and 9m long Inverted Tee beams for three separate bridges over the existing utilities.

Project: Underground Car Parks for TRIP 983 & 984 Contracts, Abu Dhabi, UAE

Client: Abu Dhabi Municipality
Designation: Projects Manager, Al Meraikhi Precast, United Arab Emirates

All-precast structures comprising three-storey columns, pre-stressed I-girders and Double Tees.
Project: Pipe Protection Bridge, Umm Al Nar, Abu Dhabi, UAE

Client: Bin Hafeez
Designation: Senior Structural Engineer, Al Meraikhi Precast, United Arab Emirates

Design and build project, bridge over existing service corridor. The bridge comprises 24 m long pre-cast pre-stressed I-girders with precast slabs and in-situ concrete topping.

Project: Zadco/Gasco New Headquarters
Abu Dhabi, UAE

Client: ADNOC
Designation: Senior Structural Engineer, Al Meraikhi Precast, United Arab Emirates

Re-design of the cast-in-place floor structure for two twenty-storey towers to precast joists and slabs (to ACI-318).

Project: Zadco/Gasco Car Park, Abu Dhabi, UAE

Client: ADNOC
Designation: Senior Structural Engineer, Al Meraikhi Precast, United Arab Emirates

Design and build project (to ACI-318), complete precast structure comprises single-unit three-storey columns, precast beams and precast pre-stressed hollow core slabs.

Project: Al Rahba General Hospital, Abu Dhabi, UAE

Client: PWD
Designation: Senior Structural Engineer, Al Meraikhi Precast, United Arab Emirates

Re-design of the conventional in-situ floor structure into precast beams and hollow core slabs (to BS 8110). Precast panels used for façade cladding.

Project: Al Maria Cinema, Abu Dhabi, UAE

Client: Al Faraa
Designation: Senior Structural Engineer, Al Meraikhi Precast, United Arab Emirates

Design and build project (to BS 8100), precast pre-stressed Inverted Tee beams and hollow core slabs.
Vanja Alendar

Position: Technical Director & Partner, DNEC-Serbia
Date of birth: 25 April 1947
Education: BSc. CEng.
University of Belgrade, Serbia

For almost thirty years engaged as a teaching assistant and, later on as research associate at the Faculty of Civil Engineering in Belgrade, Serbia. Main research results published as contributions to five books, in more than sixty research-professional papers in national and foreign Journals or Symposia articles. Topics covered include the professional work as well as the problems of ultimate and serviceability limit states of concrete and prestressed structures, externally prestressed long-span concrete structures, slender concrete structures, the time-effects in statically undetermined concrete structures, computer-aided design, non-linear FEM analysis and seismic behavior of concrete structures. Two e-books: “Design of Prestressed Concrete Structures” and “Seismic Design of Concrete Structures”. Member of Engineering Earthquake Research Institute - EERI, USA. (Reviewer for EERI World Housing Encyclopedia). Member of American Concrete Institute – ACI, USA

Engaged in design of more than seventy residential and office buildings, industrial and water supply plants, tanks and silos, sport’s halls, water and communication towers and airplane hangars.

As an expert, took part in the evaluation, rehabilitation and strengthening of concrete bridges (by means of external post-tensioning and jacketing), buildings damaged by earthquake and buildings suffering from various deficiencies.

As a review engineer took part in the execution of many projects in Serbia and abroad. As a designer or consulting engineer worked in Russia, Iraq, Czech Republic, Uzbekistan and United Arab Emirates.
Project: Airplane Hangar JAT - Belgrade, Serbia

Client: JAT

Architect: I. Antić
Struct. design: Faculty of Civil Engineering, Belgrade. Author Prof. M. Ivković

Hangar for two Boeing 747 at Belgrade Airport. Hanging precast roof of about 10,000 m² carried by three externally post-tensioned RC main box-girders 136 m in span. Main girders casted on the ground level, post-tensioned and then lifted onto the top of the columns.

Designation: Main design and “for construction” detailing of externally post-tensioned girders. Proprietary softer developed for ultimate limit state and serviceability analysis, including time-dependent effects of creep, shrinkage and relaxation of internally statically indeterminate structure.

Design and for construction detailing of hanging precast roof structure - two chord girders with steel lower, and concrete upper chord. Design of roof plane acting as main horizontal diaphragm for seismic and wind actions.
Project: Belgrade Arena
Belgrade, Serbia

Client: Limes

Architect: V. Slavica
Struct. design: Faculty of Civil Engineering, Belgrade. Author Prof M. Ivković

Multi-functional Hall with capacity up to 20,000 spectators. Roof structure 132x102 m in plan, supported by 14 columns 26 m in height. With a team of authors - The Yugoslav Structural Engineering Best Achievement award in 1999.

Externally post-tensioned main girders, four numbers along short span, and three numbers along longer span form a shallow two-way lens structure. Upper RC chord and lower tendons chord on maximum distance of 12 m are strutted apart by four-legs ‘chairs’ with RC tendon’s deviators on lower and. Roof secondary structure made of RC beam elements.

Main roof structure assembled of precast RC elements at ground level, and prestressed. Lifting of the 3,400 tons mains structure onto the top of the main columns by means of Byging equipment. Final correction of tendon forces executed in final roof position.

Designation: Main design and for construction detailing of the roof structure, main columns and piles. Support to Contractor in construction, field measurement and adjustments to Contractor’s capabilities.
Project: Delta City Shopping Mall
Belgrade, Serbia

Client: DELTA M d.o.o.
and DELTA CITY d.o.o.

Architect: Moore Architects & Slavija Biro
Struct. design: Faculty of Civil Engineering, Belgrade

First of the kind shopping mall in Serbia. Foot-print of 210x110 m, around 80,000 m² in area organized in four main levels.

Except between the mall and multi-storey garage, no other permanent movement joints designed. During construction, the building was temporarily divided in three blocks to compensate thermal and shrinkage movements.

Hybrid structure, cast in place columns and precast beams and pre-tensioned hollow-core planks.

Designation: Preliminary and main design and “for construction” detailing of the structure. Support to Contractor in construction, and adjustments to Contractor’s capabilities.
Project: Interbanking Center
Tashkent, Uzbekistan

Client: Association of Banks of Uzbekistan
Architect: D. Manasijević – Energoprojekt, Serbia
Struct. design: Faculty of Civil Engineering, Belgrade

Twenty one storey and two underground levels of 15,500 m2 representative RC building located in the epicentral area prone to earthquakes. Rigorous analysis, design and detailing of 90m high structure to withstand earthquake actions with limited damage to structure and façade, especially.

Designation: Consultancy to Energoproject – Serbia, a seismic concept, analysis methodology and special details definition. Supervision of the project development and approval process with Clients’ consultants and authorities.

Project: Water Tower
Progar, Serbia

Post-tensioned structure of 2,800 m3 water tower in vicinity of Belgrade.

Due to continuous running water, reservoir design without thermal insulation. Rigorous analysis of effect of ambient temperature and sun radiation on serviceability of post-tensioned reservoir.

Designation: Preliminary and main design of prestressed water reservoir and platform-bottom of reservoir.
Project: Reinforced concrete framed building strengthened by post-tensioning Belgrade, Serbia

Building suffered serious cracking and deflection due to inadequate design.

To correct ultimate limit state capacity and to correct unacceptable deflections, “active” strengthening methodology is applied – external post-tensioning. Together with steel jacketing of damaged columns and beams, the function building is recovered.

Designation: Concept and main design and detailing for construction. Site supervision.

Project: Center Railway Station Prokop - Belgrade, Serbia

Consultancy: Faculty of Civil Engineering, Belgrade

Review of the structural design of the 100,000 m² complex for approval and construction.